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1.2 JTTROnUCTTON

Pl Cunginxy

This Interim Rerort describes the work performed under Contract No,
HACY =2005 an tne period 22 Necember 196l through 30 September 1965,

Theorclical . .udies include the development of a machematica™ model
of & periormnree enntbeol and monitoring system, development of techniques
for predicticn and vstimation, and a description of decision methods and
criteria.,

Applications of trainable logi~ have been developed in the areas of
comrutation and cortrol, In the area of computation, Monte Carlo type
methods and'the solution of simultaneous equations have been investigated
using statistical switch techniques.

In sddition, thiree application problems are presented. The selection
of vne of these problems by NASA will be the basis for the simulation in

the sccond phsase of the program.

1.2 Historical Background

The study of trainable networks started with the .nvestigation of
neuron-like electrenic elements, especially the ARTRON (artificial neuron).
The objective of that study was to determine if these networks coulc be
employed as engineering tools. This work included study of:

a., methods of information handling

b. methods of network interconnection

2, methods of network construction

d. methods of efficient use of redundant circuits

e, the theory of the organization process

f. the training criteria,




fne oalddl o0 v traonatle Tugieal network that aceepts two 1ep ical
Top ot ral s o Prnned Yo wrovide any logical function ol the input
veriawlese A tuook iingram of this davice dis shown in figure 1-1,

(his devaca is g dwrect dmrlementation of the logical equation

Y S ‘ - o = —
0 .!A‘*’<,2AB+3AB+°£AB

where Ay [ regrenen?t The Iogieal inputs and C the logical outpat, A
“1

giver: Ju,dead tanziion o eglublished by selecting a suitable set of

values (= o, 1), ‘uese values cocrrespond to the positions of the

stutistical svitencs shown in the figure. For example, the function

o= AR 4 AB

can bte obtained by letting

‘x" = rL=
S A S

This corresponds to clesing switches S? and 83 and opening switches Sl
and Sho

Initial studies lead to a more general concept termed SUBLN (§elf
Orgatizing Binsry logical _N_etwork)o This technique provides a general
traingble logical network (TLN) with ~iccuts and M-outputs. The N inputs
are trezted by forming the 2N minterms and directing the signals to 2
stalistical switcres, In a manner similar to that used for the ARTRON,
the statistical switch outputs are directed to an OR gate to form the

vutputs The M vutputs are formed by providing a set of (2N) switches

and an OR gzte for each cutput,
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Two-Input, One Output TLN
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The celf organizing network is formed by the a’'dition of a goal
circuit, Tois cirenit generates training signals termed reward/punish
signals to the statistical switch in ovder to bias the switch probability
of closure., Inputs to the goal circuit are signals related to system
performance, The goal circuit then directs the TLN organization to satis-
fy the given onjeotive

Aralysis of the organization process is based on a state representa-
tion of the TLN (1 firiic state machine) resulting from the mcthod .f
constiuotion and o transition matrix resulting from the gonal circuit
function, The 1cotal process can be shown to be a Markov process and is
developed in detail in Appendix B.

The previous work was largely directed to the training of the TLN
to a legical connective, This work included Aevelopment of the general
theory as well as specific aprnlicatinns, The work under this contract

is concerned with the application of the TLN to solve decision problems.

The results ot this work is presented in the subsequent sections,




cagm A cinted srith a4 given svetem is taken to

oo ot Tt sosmem, It s distineuished from other
atty” v 0 o vttt an Lnat thore ds always - knosm 'eatirum" range
Lo e whe o sartoea,  vout freouently, interest is centered upon

vhe cbosrroteoay cand o canienl o this peridormance., A performance vector

ig an crdered oo of cen parformance variables.  In this light, per-

Is

formance of an airce«fu systen could correspond to its vector r.m.s.
deviations [rom oa oiven fliprht trajectory. Likewise, the performance
of an enviranveantsal control systam cemid correspond to the partial
yrorsure deviaticone from a piven temperature dependent norm,

In penaral, verfor.ance is a function of various random varia™les,

Tt is itself, therefore, a ~=-dom variable, Hence, stali-iical technioues
can he applied tc establish “he nroperties of this rerforrance. Frecuentlvy,
contr-l must »e indirect, invclvang prediction or est:r:-ion of performance,
experimentation, and control decisions,

A blosk diagram of one such a performance control svstem is provided
fer iilustratcn 1o Yigure 2«1, The svstem considered is shown involving
man ardd conchinsi. Lo fysoem vehavior is subject to control inmuts which
Jetormmne il peett caaree at time tn. Other attributes of the system can

ey e ahowere Lo dasignated as the measurement vector

/‘:\'Dr;‘ - “;tl.( L ‘), 4<n(~'n)’ seey xr(tn))

the hasia assorr tion s that future performance at Lime tn+1 is some

\n
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functicn of taese attributes at time tn,'i?(tn). That is, the assumption
is that tne parformance variable can »e predicted. The prediction tech-
nicue employed can he made adapntive, oy an updating procedure shown as
feedback to the pzrformance prediction.,

When tne predicted performance falls out of tolerance, control deter-
mination exporimenis can »e implemented., This would involve changing control
parameters in such a way as to actually change the system parameters, x(tn),
whereby the pradicted performance would be changed. Modification would
continue until predicted perfornance falls back within tolerance, A more
probable approach wculd te to perform experiments which establish distri-
butional properties of X(tn), restricting the class of modifications that
are actually implemented. These can be selected on the basis of statis-
tical theory.

The major elements of the above described performance control system
invelve adaptive prediction and decision theory. These will be considered
in greater detail below,

2.1.2 Prediction and Zstimation

Various techniaues for establishing the performance pradiction rela-
tionship
Clrx+1 -4 [ x(tn)}
have been developed and are described in the literature., One of these would

consider performance, q, as being a discrete valued function; that is

Q€ Q@ , fori =1,2, veuy N,
The r-components of the system measurement vector, X(t), would be viewed as
the coordinates of a point in r-dimensional space, If one knows the distri-

butions, p(§|q), the a priori probabilities, p(q), and the loss matrix




(corresponding to an estimate of the relative penalty associated with

assigning performance qi when qj should be assigned) then the selection
of q for a given measurement ¥ can be made on the basis of minimum
expected loss.(l)-(é) Other selection criteria can be used, however,

The technicue is termed adaptive when either the required distri-
butions pC§|q) or the loss matrix must be obtained from the incoming
data. (The a priori probabilities, p(q), may or may not be known.) If
measured-performance were noise free (i.e., the same as performance),
then the problem becomes one of "supervised" learning, Mocre generally,
however, measured-performance is a random variable about whose distri-
bution little may be known. This makes the problem here much more diffi-
cult.(7) Most of the work available, avoids some of this difficulty by
assuming measured performance to be normally distributed. Furthermore,
the form of the distributions pC§|q) is generally assumed as known,

This last restriction could be removed in many cases, however,

Various alternative approaches can be applied to adaptive perfor=-

mance prediction. A familiar curve-fitting techniocue is described in

Appendix A as applied to prediction. Here, the performance, E(q), is

represented by some given functional form

E {q(tnﬂ)J . qﬁtn)’é(tn) ]
which is linear in 5, wnere X is the measurement-vector (an r-tuple) and
©1is a vector of unknown parameters (an S-tuple). These parameters are
selected 80 as to minimize the sum of the squares of the deviations of
measured from predicted performance over the discrete time-variable.

-—
If a fixed set of parameters ©were desired, the we.ghts would be set




to vrniatly. Jalw=:s iLeoss than unity permit time-variation in the parameters
é}. The updating »rocedure is shown estahlished by a very simple iterative
process, and a weil-knovmn theorem applied to discussing the distributional
yronerties of +he param=ter. This distribution over the predicted nerfor-
mance is important in torming control decisions, as will he seen in the

next section,

2.2 Decisions and Decision Criteria

The sirpiest form of descision consists of selecting an action from
a set of alternative actions with perfect information ahout the various
consecuences., Formally, one assumes a set of states-of-nature
{ : : =
{2-{«)’0J2, "'fdrl and a set of possible actions A -{él,az, "Wﬁ;} .
A loss matrix is assumed, ((L(i,j))), whose elements L(i,;) are the loss

associated with selecting action a, while nature is in state(/., With
J

perfect information, one knows both the state-of-nature and the loss
matrix. A rational decision would be *o select that action which yields
the least loss,

With less perfect information, one might be restricted to knowing
the cost matrix and only the a priori probabilities of nature being in
state j, p (j), for j =1, 2, .es, r (rather than the actual state of
nature). In such a case one might make a selection on the hasis of its

vieldin~ on the average, the minimum loss, That is, the expected loss

associated with selecting action i is given by,

r
S W=y 1@ O
j=1




wherein one would select that action which minimizes_f’(i).

Consider now the case where one is given the loss matrix ((1(i,3i) )),
but has no information on the probabilities over the states-of-nature.
One method ¢f establishing a decision is that employed in pame theory.
Here, one selects an action from a probahility distribution over the avail-
able actions. This distribution over the available actions is esta>lished

so that on tie average, the maximum loss (sustained for any possible distri-

hution over the stites-of-nature) will be minimized.

A more useful class of decision problems extends the above considera-
tions to include int'ormation obtained from experiments or observations,
These are used to modify the established probability distribution over the
states of nature. For example, let the observation vbe some parameter (or
vector)E?. Let the conditional probabilities p (| §) be known for each
state-of-nature, j. Let the a priori probability that nature is indeed
in state j, p(j), be also known. As hefore, let the loss matrix be given
by ((L(i,j) )), where the index i ranges over the set of possihle actions
and j ranges over the set of possible states of nature. For such problems,

decisions are now based upon the observation X . In fact, a decision rule

is defined as any function mapping the observation X into an action i,

isd(?t)
The Bayes decision criteria (applied against the a priori distribution
over the states of nature), is one that yields the minimum loss on the
average. (That is, it is a criteria for selecting a decision rule which
minimizes the average loss.) Its name derives from the use of Bayes

theorem in probability which is used to derive these decicions. It can

10




[
be rwily  vou’ Loat Uhds minimum averare less criterion implies that

one snonld et action i when
r r
) v Y l—§ - 0
Z S 13,3 1 (Kl e () gz Lk, 1) p (x]3) o (3)
'j;.-.'l J'sl

for ail yossibhle actions k., (This is essentially the criterion mentioned
in ‘lisecussing predict.oon and estimation in W-dimensional space.)

There are varicus other criteria that can ne emploved. One of
these is tne leyman-Pearson criteria, as generalized to cover cases of
more than two possidle actions. 'iith only two possible actions, say 1
and 2, the decision maker can hypothesize that action 1 is called for,

He could then tezt this nypothesis and make two different kinds of

errors. An error of the first kind would vbe made it his observation

X led him to ceiect action 2 when action 1 was called for (i.e.,

when the falsely rsjected his hypothesis). An error of the second kind
would be made if his observation % led him to select action 1 when action
2 was called for (i.e., when he falsely accepts his hypothesis). ‘hereas
it is desired to minimize the probability ot both of these errors, this

is not in gensral possible., Normally, the decision rute which decreases
the probability of ocne of these errors wiil increase the pronability of
the other type of errors. The Neyman-Pearson criteria calls for selecting
that decision rule (function, d(x), which maps our observations into a
selected action) which minimizes the probability of an error of the second
kind, subject to tiie restriction that the probability of an error of the

(9)

first kind remain below some pre-assigned value. The generalization
to the case of more than two actions can be accomplished in several ways,

11




' (10,17)
In cne of thuse , the probahility of corrsct decisions is maximized

whiie trne prosaility of certain incorrect decisions are constrained to
being 1283 tnan or eoual to some pre-assiened constants.

ien more than one observation or experiment can »e made, it he-
comes important to establish a criterion for stopping the process of
experimentation (2r ohservation) as weil as the decision to ne made once
this has stopped. This 1s referred to as secuential decision theory and
analysie,

Wald developed the sscuential probability ratio test (SPRT)(l?) for
binary type decisions (accept or reject a hypothesis), terminating experi-
mentation at some point beyond which a Neyman-Pearson type of criterion
is satisfied. That is, numbers corresponding to acceptable maximum
probability of errors of the first and second kinds are first selected.
Experimentation ceases and a decision is made only when these conditions
are satisfied bv one of the two pussibla actions. His generalization of
this test to multi-valued decision functions was made on the hasis of
minimizing the risk of making a wrong decision.

The payes s2cusntial decision model postulates a given set of experi-
ments (or observations), which can only be performed in the given order
(i.e., experiment i must precede experiment i + 1), These experiments
can be similiar to one another or completely different, If the set of
experiments is finite, then it is called a truncated sequential theory.

As with non-sequential Bayes decisioning, a loss matrix ((L(1,3j) )), a
set of a priori probanilities, p(j), and a set of conditional probanbi-
lities, p(gw j) is presumed . The nature of the observation vector,

3?, is that of including measurements made by ail the experiments., Hence,

12




dAeer: fons we oo Loe n51s of sav n experiments can only use the condi-
tional  wobaoyisin of onservation-vectors whose tirst n-coordinates only
are tncwn. fhat 18, one must avesrasge the expected loss over all coordi-
nates corresponding to experiments which have not yet peen performed.
The last recuirement is to place a cost on each experiment which, in

general, deversd. upon bhe outzome of the experiments,

\

o , &
The scoiuvicu can n9 Shown( ) to be obtainable by taking a dynamic

programming type of approach and working backwards. £Essentially, experi-
mentation 1s to bs coutinued only when the current Bayes risk (established
as with non-scquential decisions to be average loss anticipated on the
hasis of current estimations ot the state-of-nature) is greater than the
expectation of loss if experimentation contimues, The detailed solution
is given in Appendix €.

FTor control or diagnostic purooses, this form of decision theory
is not sufficiently ceneral, Consider, for example, where a process is
established as heing in some one of three states (i.e., three states of
nature) requirirg immediate action. Three tests, labelled &5 e2, and
e, are asswmed availavble, Iet these have costs C_, C , and 03, respec-

3 v C,

tively. In aaqdition, Let resulis of experiments ei provide coordinate

%y which is dictributed as shown in figure 2«2, The expected loss and
actual decision will depend upon the order in which these experiments

are performed., Kor example, if experiment e, were performed first and

1
provided the observation Xp = xg (as shown) then one might cease experi-

mentation and take that action corresponding to nature being in state

W L/l. If one obtained X, = x%, then experiment e, would seem the

13
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1 %

ment e3 might he hest to perform next., Naturally, this would depend on

hest experiment to »erform next. If one obtained x s then experi-

the v-rious lcss elements assigned. (The example used here could correspond
to problems of diasnosing the breakdown of a large system, where co-sts
could bhe taken to represent time,)

This evtension and generalization has been accomplished at Melpar,
and is descrired briefly in Appendix C. Acain, the dynamic programming
type of approach is emploved, At each stage of experimentation, the
risk assoziated with making a decision is compared with the risk associ-
ated with making a decision is compared with the risk associated with
each of the variocus possible continuations (experiments)., If the risk
associated with mak.ng an immediate decision is less than that associ-
ated with the possible continuations, then action is selected on the
hasis of the available data. Otherwise, continuation proceeds with
that experiment which does not provide minimal risk,

This new procedure includes considerations where the performance
of an axperiment modifies the conditional distributions associated with
other experiments. This would be expected to occur in many cases where
the experiments actually perturb the process under consideration,
However, one should employ this procedure anytime the distributions are
not known to be independent.

To illustrate the difference between fixed ordered secuential
theory and variable ordered sequential theory, consider the following
simple search problem., Let there be an object which is randomly placed
into one of eight boxes (so that the probability of being in any of the

boxes is 1/8). 5
1l




Let experiments ej’ j=1, 2, +v., £, gives rise to results

Xy = 1, if object is in hox J
= 0, 1f otherwise

let these experiments cost one unit. Let experiment e9 give

x9 = 1, if object is in boxes 1 or 2

2, if object is in boxes 3 or L

= 3, if object is in boxes 5 or 6

=}, if object is in boxes 7 or 8
and let it cost 2,5 units., If the loss matrix is such as to recuire a
correct answer (with zero loss), then the minimum average loss for any
fixed order of experiments would place experiment 99 last (although all
experiments would terminate prior to this point). With variable order-
ing of the experiments, the optimal procedure calls for performing 69
first, It would produce an average loss of only 3.5 units as contrasted
with the fixed order minimum loss of L4 units. The important point illus-
trated here, is that the initial experiment called for by the variable
ordered sequential theory is not obtained trivially by considering the

results of any fixed orderings of the experiments.




2,3 Computational Techniques

2.3.1 Introductory Discuscion

There are several areas in which trainable logical networks (TIN)
aprly tu performance control and monitoring systems similar to that de-
scribed in the preceeding section., Its utilization rests upon certain
key properties of such networks. One property is that they are finite
state devices whose only memory consists of what state it is currently
in. Another property is that they can be configured to behave as stochas-
tic devices which can be analyzed as a Markov process. It appears naturel,
then, to consider their application to such computational techniques as
Monte Carlo and Simulation.

Other uses of TLN, however, have been studied previously. One of
these is their use in obtaining high reliability in systems. Another, is
in their use as control elements., This latter work, although not described
here, will be considered relative to its application to the study problem
selected, This section will concentrate on the use of TLN's for computa=-
tion.

The basic element of the TLN, referenced as SOBLN, is a k-level stat-
istical switch. This is simply a switch which can attain any of k states.
Fach of these states corresponds to a probability of the switch being
closed. It is this element which is fundamental to the computation process
described below. The fact that these devices are so flexible, so amenable
to high-reliability considernstions, and consist of this common element
(wherein it is amenable to concepts of microminjaturization), provides

reason for the investigation of their utility as basic computing elements
17




as well as their use in problems amenable to solution by other than Monte
Carlo techniques.,

2.3.2 Basic Arithmetic Operations Using Statistical Switchns

There are several methods for implementing the statistical switch

to perform the multiplication and division of two numbers. The first

method consists of converting both numbers into proper fractions by a
scaling operation. Fach nurber is then associated with a probability
setting of a k~level statistical switch, The outputs of the switches are
sent through an AND gate (alter: atively, the switches may be merely placed
in series). Since an n-bit counter is the basic element of a statistical
switch, the k-level switch is one that is capable of . king on k = 2%
different probability settings.

A Monte Carlo prr ess is initiated with some number of samples, N,
taken for conveneince to be a power of 2 (say ™), The 1 outputs from the
above referenced AND gate will increment an m-bit counter. For a large

enough m, one would expect tha. approximately

P, P, = (number of 1's present in the counter).
1°2 7
-\m-2n)

2 Pi = bias setting
To obtain the original, one merely shifts the counter m-2n bit positions

to the right. This is s scaling operation which, in effect, corresponds
to multiplying ty the square of the scale factor in the denominator.
Since the switches are independent, the AND function is represented by

P(AB) = P(a) P (B)




ihe accuracy in this @mnle Carlo computation can be analyzed on the

basis of the variance of a binomial distribution, given as

e

Z
¢ = NPqg,

where

q =1-FP,
and where N is the number of independent samples.,
To iliustrate this process, consider the following example:
Let N = 102ko The product of 3¢5 = 15 could be performed using k-level

switches, where

k=2 =252 3.
Then,

P(A) = 32. P(B) =33

P(AB) = P(A) P(B) = 15
102L
Since m = 2n there would be no shift of the counter after the end of the
N samples. In gencral, howcver, one would anticipate much larger values
for m, which would require the above described scaling shift.

The division of a scaler by another scaler can be readily performed
by modifying the k-level switch to include a decoder which resets the
n=bit counter at any integer r where r< 2", Thus, for the operation a/r
where r X\ a we merely use the foreshortened counter k-level switch with

th

reset occurring on the r” pulse and with the bias level set at a,

19



The second method considered [or division involves the use of a
closed loop feedback arrangerent which adjusts the statistical switch

until it reaches 2n eouilibrium about a mean, where the mean is

r(y) =%m-

This switch is then multiplied with the dividend p(z) which is set in a
third switch., The rule for generating the transition matrix, correspond-
ing to the generation of the state with probability p(y), is determined
by a combinational network such as the one shown in figure 2-3.

The output of the k-level switch, p(y), is fed in series to the
switch, p(z), whose output will yield the quotient (modified by %), of
the form

e = p(y)p(z) = 51%(%%

The product operation can also be performed with the k-level switch,
k = n, shown as p(y) and one m-level switch in a serial fashion as illus-
trated in the following example. Let the product of the two numbers, say
3 and 15, be computed. Set the numbers in the denominators of two fractions
with a power of 2 in the numerator., Using the logic shown in figure 2-3
one needs p(x) N\ .5. However, a different implementation could be used in
parallel to handle p(x) -~ .. One can then sense the correct output,
Using only one k-level switch, we interrogate the first twice with a
counter reset at 3 and the second with the reset at 5. This yields a
probability of 1 being p(1l) = % . % , as desired.

From the above discussion of the AND rule, one has

M) - o " 2T B
3 20




? 2

v

- 3

Figure 2-3 Stochastic Adjustment Rule

Figure 2«4 System for Solving Equations

21




Thus, when the equilibrium state is reached, the sampled value will be
15 with a variance which decreases with n,

2.3.3 Partial Differential Equations

One of the capabilities of a SOBLN as a Monte Carlo s‘mulation
device is in the solution of linear partial differential equations of the
parabolic or elliptiec type. We shall consider briefly only the parabolic
type because of its relevence to random walk and diffusion processes.

The Fokker-Flanck ejquation, mentioned later, is a P.D.®. of the parabolic
type.

Consider the genecral second order linear partial differential equa~
tion with two independent variables;

a(x,y) 224 . b(X,y)) § + clxy) QH‘(X’Y’Q7 @y Y=o

Y x DX y

If (the discriminant) b2 - L ac« 0, the equation is of the elliptic
type. Such equations commonly represent equilibrium situations; an example
of which is the celebrated Laplace equation,
)24 . P
Diffusion and heat flow equations are of the parabolic type with
discriminant o? - i ac = 0O, They commonly represent situations with
unbalanced equilibrium, Two examples of this are the one and two dimen=

sional heat flow equations, described by

)u = K bzvt . bu = )2u + \2u
3 W4T N2 Y2

respectively. 22




The wtandart -« ron~n to the one-dimensional expresiosn is separation of

variables, vieiting the solution
cit .
u=e2" | acosht+b sinh t:}
e

A very useful means which exists for obtaining the solution of the two
dimensional eauations is the Monte Carlo process, where we consider a
particle undergoing a series of random walks over a two dimensional lattice
with a tailied seore corresponding to the state after t transitiong.l For
an explanation ot this process, consider the following situation. Let a
particle undergo a series of random walks starting at (x,y) = (0,0) and
continuing over tihe lattice for t steps with a transition probability at
each point (x,y) associated with having the particle move to (x + 1,y),
(x-1, y), (x,y+1), (x,y-1). Let each of these transition probabilities
be equal, Assume, initially, that the transition probabilities are inde-
pendent of x and y as well as the past history of the particle., This
describes a Markov process with xy states and & symmetric transition ma-
tri¥, The transition matrix has non zero terms along the two diagonals
on either side of the main diagonal, where all non zero terms are %. The
rest of the entries are O,

At each point un the lattice there is a probability function P(x,y,t)
of finding the particle at (x,y) after t transitions starting from (0,0),.

To show the relationship of this process  to the heat equation, note that

P(x,y,t) must satisfy the difference equation,

P(x,y,t+1) = % P(x+1,y,t) + % P(x=1,y,t) + % P(xsy +1,t) + %P(x:y "lat)
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Liee

inet that the particle mucl have been at one of the

above Lour pusiitors ot time t in order to arrive at (x,y) at time t+1.

Subtracting pPis,y,%) from both sides and using the expression for second

differences, wc

Hence,

+P(x,

see that
A f(x) = £(x+1)=f(x)
A T{x) = Aj_f‘\ml)ut‘(x)j

L]

FLx4?) =P x41) +£(x)

P(x,y, t+l) = P(st:t) = P(x+l,y,t) - % P(x,y,t) + P(X'I:Yst)

v+1,t) - & P(x,y,t) + P(x,y =1,t)

= %{[P(x-&l,y,t) -2 P(x,y,t) + P(x‘l:Y:t)]

+ [P(k,y4-1,t) =2 P(x,y,t) + P(x,y-l,t)]}

This relates the first difference of P, with respect to t, to the second

difference, with respect to x,y. For the limiting case of a finer lattice,

the above difference equation is similar to:

3orf - N

A

X

k(325 4 52?5 K =
y

This is the two dimensional heat flow equation,

If we keep a tabulation of the number of times the particle appears

in each state (x,y) for a range of t and divide by the sample size, we

have an estimate of P(x,y,t). If, instead of starting at (0,0), we start

at a point on the lattice (x,y) where the starting point is determined by

a distribution f(x,y), we have the initial function P(x,y,0) generating a

particular solution of the difference equation.
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Sy oeernonl Lo e Lranoition probabilities we can simulate other
raraioloe popianal 3 fTerentinl ecuations andy although the transition matrix
beoyres sonmwhat core complex, the analytical methods of section 3,2 and
Appendiy o esr otill be applied,

2.3.J1 letrix Inversion

A briet deseriplion is presented here of the inversion of a special
type of metrix onceuntered when concerned with the control of Markovian
PTOC@SSES, © ~ procedure with a different implementation is pvs-
STt LU Yo wwsi X, using the resolvent expansion of a matrix. In
the section on spplication problems dealing with Markovian procedures the
need for matrix inversion i avoided by means of using the iterative solu-
tion of a set of ecuations. Thus, only the storage of a vector is needed
rather than a matrix,

e can invert 2 matrix of the form I-Q where Q is a stochastic matrix
with all elemeats qy j = 0 and where 3: qijz.l for all i, To do this, we
extend the dimension of Q by attaching a first row and a first column to

it. These are selncled so that the new matrix, A, will be stochastic.

As an example, let

ﬁ 0
Q "
o f
-
One then forms
rl 0 0 i
1 2 )
A e b b
1 3
L 0 I
. J 25




The matrix @ wili always be stochastic (0 a, . 1 for all i and
J 1“:
c) v oreseribes a Markov process which is absorbing, owing to

o
—

a.
1

S

¢

the sclecticn of the elements of the first row. Because the civen valucs
of Q are Jesu than uniuvy, (I-Q)'1 will exicst and can be shown tc equal
I+ + Q? t++¢. lsing analytic technicues such as the 7-transform, one
can onew an ciosed form) Lne stabte prob-bilities for each traosition, t,
in reference .l it 18 shown that these probabilities can be directly
related tn (I-Q)'l. That is, using the above defined @, onc obtains

00 10 L 0
s "‘1 -~ - 2 .o = N 3 tl =
\-3-""%2) : I"Q*‘Q + iﬁso(h) 'LO 1 0 h
This illustrates that we can allow a series of random walks to occur,
where ea~h time the absorbing state is reached the process is re-initial-

2N statistical

ized. A TIN (similar to LANNET, for example) can utilize
switches as memory devices, and thus have a capability of handling a
matrix of dimension N.

The random walk can progress in either of two ways. For the first
method, let one K-level statistical switch represent the transition matrix
with a single training rule generating the matrix., This configuration is
feasible for lower order matrices possessing a large amount of symmetry
and small number of non zero elements, such as the class discussed in
section 2.3.3. An alternate method is to twnclude N extra statistical
switches j = 1,2,.,.,.N to this TLN. This arrangement allows each of these
switches to represent a state of the Markov process considered ana to have
a separate training rule applied to each switch, These are called "state-
switches", Such a training rule is merely a probability distribution rep-

resenting the respeciiwr row of the transition matrix and i: <asicr o

synthesize, 26




The ranmdom walk can proceed over this sel of N switches,(the re-
maining 1 switches are used only as tallies). A decoder can route a
tally bit to the proper memory nwitch each tiue the process is in switch
j. The switches are associated with ctarting in state i 2nd enteving
state k (switch (i,k)). These are activated when the random walk begins
in state i and are incremented (tallied) when the corresponding "state-
switch" enters state k.

2.3.5 One Method of Solving a Set of Simultaneous Equations

Congider the algebraic system of equations A X = b, Referring to

the implementation of figure 2-u one obtains the relation

{ % = gIb -Aglx
or
b= (A + %) x

in the feedback loop.

Thus
. -1 .n
>2=(A+§) b

S See ref, (16)
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fory - o (intipite pain din the amplifisrs). ‘race, the oy oten in

i, vre  2=h colves Lne oot of ecoualion

ro= .

In this siteation the slebility of {the syslewm is juarvantred it
nalrizx & ds pogibive deliniie, sirce r21 characieristic roots vould then
have negative real parts. &t the exrense of some additional computation
one csn proceed in 1 similar manner when A is not positive definite. In

such cases, we pre-multiply A by AP, obtaining

However, the multiplicalion of two matrices is rather cumbersome for use
by TIN.

2.3.6 Linear Difference and Differential Fquations

We now consider the stability of an autonomous system of linear
differential or diffserence equations. The system could be a vector-matrix
state space rerresentation of an nﬁh order linear difference equation., In
the Markov Decision Process application, described in section 3.7,
the Jacobi point iterative method of computing an optimal policy results

in the following equation;
28




ok o o 2
dk =" d, where do =Xy = Xy Qe T Xpyq - X

S
and where dk rerresents a vector difference which converges to zero as

the iterative process converges to a solution. This convergence can only
be guaranteed when the latent roots of the matrix F are & 1., To show

this, consider the difference equation related to the abcve expression

-l

da
d,, = Fd

. Wwith given initial state d_.

If the latent vectors are independent, we can apply a similarity trans-

formation to diagonalize F, as

1

F=PDP,
where
pD=plrp
Xl
Ao
0
0 ¢ ) )\ - iﬁg latent root of F
\n 1
\ -
Since

F «(PDP L) (PD P L)s ppp”

one notes that

29



A,k
1
SN S
2 -
g : P
0 "
k
i k-—ﬂa
Thus, for large k, 4 = F dg -0 and the process converges to a solution.

k
If the characteristic vectors are not independent then the matrix can

always be transformed into a triangular matrix:

4 TRY
or
Then
R Fiea1 = FR.;;
or
—n ]l .. =
Vsl * R FR Yies
where
p=rlm

is a triangular matrix,




), nwto that we cap always wrile b oin the fcorm vhere

Ty otwoa diigemal aalrix and D, 1s a nil potent matrix {having non=-zero

D .
elerments only to the right of the main diagonal). E./panding D by the
sinuranl thegrem gives

T

Pl be
‘1D2+-—-+D2

VoL
D¥ = Db + PDy

Since Dy 15 nilpotent (all characteristic rocts are 0), there exists a

j6 ]

iy
"ra" such that D,° = 0, It is

Dl’ there exisis some p, whereby Dlpl wiil alsc be zero,

1so evidont thal for the diagonel terms in

Cther considerations aprly to the continuous time case. Here, the

set of differential equations

2 —
x=Ax
has asolution
A
At ‘7
x(t) = e x(0)
2
¥
:6:4-A+é“s£+--..))t(0)
1 2

anach can be ovaluated i oa manne: Ceseribed in the literature.

2.3,7 Computation of the Inverse of the Least Square Recursion Formula

In the recursion relation for updating a least squares estlimate,

described in the rreceeding section, an expression of the form

31



=1 w1 -~ T P is known

pk‘:‘l = 1 k 4 «

-1 -

is encountered, whers Py 1s an n by n syrmetric matrix and ~ is an n
(13)

by 1 column vecior., Ueing o matrix inversion lemma, we can ropresent the

i ’ !
above as

ot T —t -y .. T
=7, «F . + 1 P

The atove expression is osuil™  to handle on a Monte Carlo basis sinre

the underiired vector-ratrix product ;;F Pk apraars twice and since Pk;?
is the veétur transpose of SzTPk, Thus, TLN's could perform a single
vector-matrix product in the fashion described earlier in this report.
Ther.,, a dot product oreration is performed to yield the expression

(E;T Pk)é? , using ?n statistical switches in the fashion ' :*1.27 to ‘he
first portion 5f & vector matrix computation.

After incrementing this result by 1, the resulting scalar (éQT Pk§2+ l)‘.l
is set into a single statistical switch consisting of a mod F counter
(described earlier) with numerator 1., The bias probability is 1 o

(;‘zTPk"?. +1

This switch is placed in series with all switches in the TLN to obtain the

desired quantity

The quantity (PkE?) (&;T Pk) is obtained by a vector-vector product result-

ing in a matrix. The elements of this matrix



((a;)) = (B <) (4T B

can be stored in the switches themselves to minimize the amount of the

input-output logic. Since

P.

K+l = Pk - A

we can subtract the elements Pij from a3 and ctange its sign, this opera-
tion being performed by a combinational network at each switch.
This technique, combined with the matrix inversion method described

earlier, is sometimer a 1seful supplement to the standard schemes for

solving a system of equations,
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3.1 Trainable vontroller, Problem 1

3.1.1 Problem Jtaggment

tiven that failures and/or changes in plant characteristics have
occurred in an automatic control system, can trainable logic be desiened
to take over the control function by monitoring of human perfcrmance on
manual control of tne system?

3.1.2 Problem Motivation

Spacze flights to date indicate that man is one of the most reliable
components in the complex man-machine system during space flights., In the
fature it is logical to expect that his capability to monitor space vehicle
éystems, perform control functions, and troubleshoot, make him a utility
backup for many existing subsystems in the spacecraft. With this in mind,
it seems reasonable to assume that his work load will vary ereatly depend-
ing on how well things are going. Further, it seems reasonable to assume
that the performance on tasks deteriorates if he hecomes overloaded with
work., It is possible for trainable logic to relieve some of the burden,

Let us suppose that one of the many automatic control or regulator
systems fails and must be controlled manvally. It is entirely possible
that, while the failed automatic system is being controlled manually,
trainable lcgic monitors both the astronaut's control and the data upon
which the astronaut is basing his control decisions, After a while the
trainable controller can signal that it is ready to make control policy.
It is possible, and under some conditions probabla, that the trained

controller will perform better than the human which it has monitored,



3.1.3 Qg@hematical Formulation

‘le may set forth the following framework of the prohlem in a
general state notation.

Let x

n

(xl X2, ees X ) be metered system state variables,
n

1= ug, see U he controller policy vector,
m

¢ (E)é() a controller constraint,

G(x,u,t) = 0 a relation between control policy and

system variables, and

P(x,u) a performance index which is minimized by
proper selection of u(x)
Performance generally is marked:
P(;,;)L.O satisfactory
or
P(i,ﬁ)é() unsatisfactory.

For the case we wish to study we may assume that a poliey u(x) has
been predetermined such that P(;,;)L-O until a controller failure or plant
characteristic change occurs., In the latter case it is necessary to deter-
mine a new control policy \-1'*(}?) such that P()-C,‘l-l*)< 0. The new policy is
simultaneously determined by the human and transferred to the trainable
computer (controller)., Additionally, it should be expected that the
trainable logic gives some indication to the human when it is ready to
take over control,

To give more meaning to the general framework let us specify para-

meters, constraints, plant equations, costs, etc., Let the plant be a

35



servo motor hich is adjustine to command inruts which are <ten funct’oens.,

3y letting the time intervals ~etween <ten chans2s be much groater than

the system time constant, the steps can he considered indevrendent in time,
Nature selects any one from a numb~r of plant ecuations “v seclect-

ing 1 and j in the coverniny differential eouation
Vray =ik u (7,
1 ik’
After a selecticn of (i,j) the control problem is to choose k such
that a perfermance index P is minimized. As a performance index let us

arbitrarily select an index which conserves both fuel and time,

t=t
P = f b
t=t Clu| +1 4t
o)

where tf-t is the time recuired to “ring the svstem output to the
o}

input command,

As a constraint on the controlling policy, let us assume

g (u) = |u| -1£0

and actual permissible values

u = (1, 0, -1).

Let
starting time t =1,
input 2 =12,
output y(t)s
error e(t) =26) - y(t),
error rate &(t) = 2_ - y(t) = -y(t) for step input,
coutrol policy W, = u(é,e), and
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differential ecnation e'+ a

governing error ve

Starting at t = to the above variables are:

z= 2,
y=vy
O’
€ = €y and
L
é = €y

At t = tf, the error, the error rate and performance are:

e =0,

é = 0, and

p. = Ut

1 } clul +1 at
t=t

0O

results from using u = u1
A change in the desired policy control occurs when the coefficients (a,k)
are not (al,kl)

in the equation

3.1.4L Phase Plane Analysis

Let Rl’ R2, ‘oo Rn be regions defined in the error-error rate
plane, A control policy u(e,e) is then determined by specifying a control

value (1, O, -1) for each region in the phase plane. Thus, for a given

sel of regions Rl’ R2 coo Rn all possible control functions could be

enumerated,
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Selection of a new control function by examination of all e.aumerated
functions becomes impractical because of the large number of functions
which are created by only a handful of regions. For example, with three

310 control functions to choose

control values and ten regions, there are
from,

3.1.5 Control Poli~y Selection

The regicns are defined by a set of winary variable. This,then,is
the input space ‘o the trainable logic. The output space is the set of
control values (1, O, -1). The mapping of regions to control values is
accomplished by monitoring of the human operator who, though he may have
no knowledge of phase space, is necessarily assigning values to regions
as he controls the system.

As described, there appears to be no reason why the initial automatic
control system should be Aistinct from the trainable controller. That is,
the initial automatic control system will be the trainable controller
trained to an initially specified control function,

It should be pcinied out, there remains the problem of deciding when
the trainable controller has received enough training to be trusted. Its
reliability will depend on the variety of inputs it receives and the

consistency with which the human operator behaves,

Lo



3.2 Markovian Frocess Control, Problem 2

3.2.1 Problem SlLatement

Given a mau-machinc system that is characterized by its being in
a finite sel of stntes, let the transition from one state to another
state be representable as a staticnary Markov process. Let the transition
natrix, deseribing Lhis operation, depend upon which of a finite setl of
policies (mcdes) “he system 1s slected to operate under. We investigate
the optimization of system performance through mode control.

3.2.,2 Problem Motivation

There are any number of weal and practical problems that can be
represented in the above framework. Any sysirm ‘nich is stationary
Markovian (or can be approximated as such) and whose transition matrix is
affected by some control parameter, gives rise to questions of the best
parameter selection. To illustrate the applicability of such a develop=-
ment, various specific systems will be described in a later section,

3.2.3 Mathematical Formulation and Review

3.2.3.1 General Formulation

The theory required for solving the above problem has, for the
most rart, already been developeé}a)lt is a logical extension of decision
theory, and emrloys essentially the same theoretical foundations. The
results, however, will be seen to be somewhat more sophisticated in
certain respects.

A system is postulated, which exists in any of K-configurations,

Let the system, in each of these configurations, be describable as a

stationary Markov process., Control of the system ic exerted through

Ll



selecting wy of the L-configurations., & control policy is a rule which
determines the configuration to b~ selected. The problem posed is that
of selecting an optamal control policy.

In order to solve this problem, the meaning of "optimal" in regard
to such a system must be considered. This is accomplished by assigning
costs and minimizing tre eoxpected louss.

Let eacr of the K-vonfigurations involve M transition states. That
is, let the transition matrix for any of the configurations be an M x M
matrix., Assign s o3t vector ({oreach of these matlrices), giving the cost
of being in any of these M states. Hence, for configuration i, we have
the M x M transition matrix, Ai’ and the N x 1 cost vector, ¢;. Now, as
the system proceeds through the various states (for any control policy)
a cost is accumulated. The optimal control policy is that wnhich minimizes
the expected loss over (1) an infinite number of time increments, (2) a
finite number of time increments, or (3) until the system attains a desired
state.

3.2.3.2 Use of the Z Transfornm

The Z transform has been found to be useful in the analysis of
Markov processes, Hence, before proceeding with the develorment of the
optimum control of the above vrocess, we shall briefly review the appli--

cation of Z transforms to the analysis of Markov processes.

The Z~transform is lefined as(l9)
(1)
- -
z[t00] = SDre™ = £(e) +r)at e s@ln e .,
t=0

which for £(k) = 1 gives

L2
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1-2=
since
[ g
7 [f(ml)-l = Zf(kq‘;z'
d £
r - ) b
R L R O LA T ¢

one obtains the difference equation

2 [taen)] - {P\z) - f(o)? , 2)
for Piz) = % £(k)
and ' 2| ~ R

with

RP the radius of convergence of f(k), This can be

-

applied to the =nalysis of Markov processes represented by equetions of

the form
p(k+1) = A" p(k) (3)
n
where A is a stochastic (transition) matrix wichaij = 1 for all columns
=1
Jy and p (k) is the distrivution ove:r the possible states at time index k.
——dd

Letting p(o) be the initial probability vector, then after k transitions

one has

L3




p(i;) = Qk p(o) , (L)
where

N

Using Z transforms, one can solve for p(k) in a fairly easy manner.

From the abcve derived difference equation, we see that

Z{P(z} - p(0) { = QP(a)

wherein we ottaln
y - - -1
P(z) = (I-z7°Q) P(o) (5)

which converges for all !z| .1

r

The inverse transform yields the general form of ﬁfk) in terms of k and

p(o).
To illustrate this technique, consider the following example.
Let ’
11 ¢
'ty 3 1
abe 1203 with P(o) = |
Pl 2 '
73 O
-
Then,
N =1
lr 1,-1 l,,'ll 4 }
13 F
~ i |
Pa) = 'y N - @
=1 1-2z
+ 2 .3 ! LO
1 /
\ )

h
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(l_,;‘ J)(l"g 7 J.) %Z 1

/

. |
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L L2

pits =
! 1, -1
L (1-2 )(1;% z )

That is,
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(%3 T8

/ N

(521 [hb)

+
N
N+
g

e

./

~1

1-'52

1=
O —

i
vithe Wil

where the vector on the left represents the equilibrium state of the

process.

3.2.3.3

Tstablishing Expected Loss for a One Corf iguration System

We can consider the analysis of a one-configuration ergodic Markov

syster: having a cost which is associated with each state of the system.

That is, we consider a system with one transition matrix and one cost

LS



vector, After k transitions, a mean cost increase can be determined
associated with ecach initial state i. Let fi\k) be the expected (mean)
cost over k transitions, where the system started in state i. It follows

then, that

£500) (6)

f.(k+1) =c. +> q
1 1 J Ji

where c; is the cost of being in state i for one time index. Therefore,

we see that
f(i N 1) = Q' (k) +¢ (7)

where

H
1]

(£15 £5 eees £)

and where

i
c = (01’ 02’ seey Cm)

Since ¢ is independent of k, its Z-transform is given by

[ = o = 1 P = Z 3
Z {c) cZ(1) s c -1 © (8)
Therefore, if we let
-t ™ N
JORRIEOIP

then we obtain
- - T -t 7z -
z F(z) - £(0) =Q F(z) +3=1 ¢

or

L6




fn) = (21 -aD 5o) + 2 1-DMre (g
If, for convenience, we take

f(oj = o
then the above equation reduces to

- p T\=1 -*» (10)

t(zjh = 579 (2I-Q) ¢

3.2.3.}y Establishing Expected Loss for a M=Configuration Sys tem, With a

Given Control Policy

As described earlier, a control policy is a rule for selecting a
system configuration, Let this rule depend only upon the state the system
is in. Then, each control policy describes what is equivalent to a one=-
configuration system whose transition matrix is a composite of those assoc-
iated with the M-configurations. That is, row j of this matrix is selected
as the jih row of the transition matrix for some one of the configurations.,
The expected loss for this control policy is then established as described
in section 3.2.3.3 for a one-configuration system. The optimal control
policy is then the one that yields the minimum expected loss.

Consider, now, some selected policy u (which may or may not be optimal).
After a large number of trials, one expects the system to settle down to an
equilibrium distribution over the system states. This would imply that one
could establish a mean cost per transition, L, for this control policy.

Indeed, it can be showncu» that for large k,

£k) = KL+ % (11)
L7
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where f(k) is the expected loss vector, L the mean cost per transition
vector, and v some constant vector. The components of these vectors rep-
resent the starting state, and the time-index, k, represents the number
of transitions away from *his start. If the system is ergodic, then the
components of L can all be shown equal,

Applying the resulis shown in equation (7) to equation (11) yields
(k+)L + v = ¢ EcL‘+v"] +c (12)

Since Q is stochastic, this reduces to

L+v = ¢ + Qv (13)
Subtracting
T T
(vn, vn’ vn, ceey vn) = Q (vn, Vn, cee vn)
from both sides of this equation yields
=b e RN
L + w = ¢ + QTW‘ (1)-1>

where

- \
= - - L)
W (vl v ,v2 vn’ ceeey Vo 9=V , 0,

are the starting costs relative to state n. Since ﬁ’ involves (n-l)
unknowns, and since L invclves only one unknown (the compunenis being
equal for the ergodic case considered here), these n-equations are suffi-

-k -
cient to solve for both L and w .
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3.0.5.5 Usiablishing an Optimal Control Folicy for an m-Configuration

Cystom

Fe..;an's principle of optimality can now be usecd to establish
an optimum control policy. Let the m-configuration transition matrices
A

be A 5 eeey Am .The procedure for establishing the optimal control

, .

1’
policy io now s follows:
a. Selcct an arbitrary control policy, Uy e
o=t
" )
b. mmbmuaMuﬁ and w (up).
c. Form the vectors
Z.( oo + A, W(
(u = ¢, + A, w(u
J J J

) D)

for each configuration, j = 1,2,40., M.
(Note that 53 is the cost vec .o» for configuration j and
that it has components €43 corresponding to the cost of
leaving state i.)
. LT .th

d, DNefine "min Z(up)" as a vector whose i~ component is the same
as that of i;?ul), for some j, and which is the minimum over
all the other 132 components.

e. Form the new control policy, Uy, as the one that selects con-
figuration j when the system is in state i if the i:t-'k-1 component of

-ty -

"min Z(ul)" was obtained from Zj(u1)°

ot
f. Repeat this process, solving for L(u2) and ;? (u2), forming

T N " anad
Zj(u2) , determining "min Z(u2)", and then establishing uj.

This process will converge rapidly to an optimal policyﬁla%his

[
can be assessed by noting the convergence of L.
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3,2.3.6 Policy Netermination by SObLN as a Stochastic Computer

To irelescul Lhe preceeding computation process, we shall obtain
the solution of a set of simultancous equations as an iteration process,
where Lhe forant used is a set of linear difference equations. The cri-
terion for convergence Lo a snlution becomes identical to that described
in showiny siabiily ol o Tipear 2utonemous, 2 order plant, DBecause of
its appropris’enas: to the problem discussed here, this section was not

included under *he section on computational techniques.
1 q

Consider ine system of equations

X = B (15)

Let

A = E-H (16)

where E is a matrix which is conveniently inverted., Then the above
becomes

b wanlt o
X x + Db.

E = H

The iteration process consists of inserting an initial estimate vector X,

on the right and solving for X designating it Xqye Thus,

etc, so that in gereral we obtain

50




-do -—di —b

Bry = Hxe + 00 (17)
Therefore,

—h -1 — 2 - I ~a -~ 8

Tl = E T H xk + E b = F Xy + 8 (18)
vhern

Foe g (19)
and

. B (20)

interpreted as an error~vector. Since

P )

- -t nin
xk+1 - xk = F X = X + 8

- . .Y
=Fx - (H Xeq * s) + s
-in -—dn
= F O - %)y
it follows that
- =
dk = F dk_1
2 == (21)
= F dk-2’ etc,
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wherein

LY k bt

d = F dg (22)
_ ) -t

do =Xy - X5

. . s ~b L .
For large k, Fk is aprroximately X‘&: where A is the eigen vector cor-
responding to the largest eigen value X' . The accumulated differences
will converge *c s sslution if )\‘4 1 (lie in the unit circle),

From equation 18, we obtain the iteration process

]l o
X, =: =E b (23)
ot —b e
X, = (I +F)s = x, + Fx

e

2 - -
Xp = (I +F+F)s = X, * Fxy

L
L]
L4
L

-"Tﬁl -?o + F ;..k (2k)

This recursion relation affords us with a simple means of solving a system
of equations., An intelligent chcice of E insures convergence to the solu-
tion, using the method described in this section, or possibly one of the
inversion procedures described in the computation section.

Return now to the problem besing considered. The set of equations in
the policy iteration routine (section 3.2.3.L4) the computations have the

following forms
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That is, in erpardrd forr,

(Y r
1 wl
1 W2
L
|
I
b1 0
\ T, o

—t
= C
n
\ /
¢
s
: L ]
o}
n
/’ b,

/

!

all 312 R O
321 L) L) O

C
a 0

nl o6 e 00

/

(25)

where the matrix used is Jderived from A by replacing its last column with

Zeros.

of this new mat:rix are less than 1,

or

Let E be the matrix:

-al? e o o 1
1-322 e o 1
1l
1l
wla
s C
¢
l1 0 O .
o1 o0 .
0 O [ ] L ]
l 0O . . .
\

This dces not change the equation,

-

Obviously, the eigen-values

’ N
Wy

w2

Y-l

r
\

/)
¢

2

N/

This equation can now be rewritten as

(26)
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By “nsprction, we oltain ils inverse ns

/
1 0 0
010
£t . .. .
00 .
o . .

Letting

1
L =E +H

we see that

q \
10, . .-1 !
01~ . .-1
FeweETE=| 0o
00.1.-1
0..0 1
\ /
That is,
/
2117%n1 %127%n2
821781 3227%n2
F - [ ] [ ] L ] ® [ ] . [ ] ® *
511 8n2

e 1

a o .
rl
\
[ ] [ ] * 0
[ ] [ » O
» L 3 [ ] o .
/

a
1, n-1,

L L L] L L 4 o

L . » L L] L ]

n,n-1

(27) —

(28)
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o oy,

unere

' "= 1
a., =~ 0 . a 1 for all i
a5 = 0y i3 <

tle can now substitute the above relation into equation 2 to imple-

ment the iterative procedure for policy determination,
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3.2.3.7 Spccatic Svstems for Aprlication

As mentioned earlier, many systems in noture can be analyzed in
the Markovian framework., It should be noted also that often,by a modest
extension of the stale space, natural rrocesses which arc otherwise not
farkovian can be put into the Markcs framework,

The techniques presented here could ulilize TIN as either (a) a con-
trolled process, or (b} as the computational element which determines op-
timum policy for control of a naturally occurring Markov process.

a. Using TIN as the controlled process, we have an analytical
method for determining tbh-~ effectiveness of various training rules in
directing it to an absorbing state, with costs associated with temporary
presence in each state during training, and costs associated with the use
of each rule.

b, For the optimum control of Markov processes we use TLN as a
stochastic computer to comopute, on or off line, the control policy, For a
regular, non-absorbing,process the theory allows us to compute a state
dependent conirol policy which minimizes mean cost/unit time. (Fig. 3-3),

Listed below are some examples of possible Markcv systems, It is
likely that numerous examples (not included in the list) exist, for which
investigation would be profitable.

1. Regular processes

a. Regulation of closed loop (linear & non-linear) control
systems with random inputs. (Fig. 3-l)

b. Inventory problems with stochastic demand.

c. Regulation & control of ecological processes.
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~

7,  Ahsorviny irocesses
1, Gneiro! systems with random disbLurbances which lock on to

the reference oirngl when within a prescribed error range (absorbing
state),

b, IT the reference signal is noisy, the above problem becomes
ope of compubicg an ortimal porsult trajectory,

¢, Reliability analysis of systems with machine breakdown and
replacement. or repair.

3.2.3.8 Simulation Problem

For a simulation study, a regular Mesrkov process will be simu-
lated on the SD5-910 Computer in Fortran using random number generation,
A set of control actions will be available each one of which governs the
behavin, of the process when its respective control action is being imple-
mented.

The problem will be the determination, by TLW, of a control policy
which will minimize the mean costs/time where the cos% structure is rep-
resented by a cost vector associatéd with each transition matrix.

The ensemble of transition matrices could represent the response
of the human to coniigurations and displays in the control system inter-
face.,

The TIN will compute an optimal policy (by Monte Carlo) based on
the mathematical input data. (See Fig. 3-5.)

bo Objective

deasure speed and efficiency of TIN as a computational element

vor compuling optimum policy.
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2.3 sayes iocnsion Making (Problem “3)

3.3.1 Provi o laveucad

This neoblos is the application of trainsble logical networks (TL7)
to the on~vine s2lution of Bayes decisions, The specific decision problem
is the roubing of niznals along one or more paths, As shown in figure 3-5
the sisnals arve reocossed to form inputs acceptable to the decision
computar,

The devizion computer determinos what cuuput channels are to he
activated zccording to the lowest cost Bayves criterion. One output ;.av
includes an external evalustion device that can modify the cost matrix

contained in hie decision computer,

3,3.2 Problem Mobivation

As an exaumple of the type of system treated consider the problem
of processing medical and/or environmental data in a space vehicle mission,
The variocus poosible actions may be to telemeter to earth, record data,
direct data to dispiays, and combinations of these and other actions.

For Bayes decisicning it is necessary to establish beforehand the
prohabilities that the process is in a certain state given the input
signal. For instance, one method of classification of EXG waveforms
involves the identification of four pathological states: inferior
myocardial infaretion, right bundle branch block, and left and right
ventricular hyperirophy as well as the normal state,

The uge of TLN as a decision performing device recuires two
conditions,

(1) A&n estimate of costs of taking each action is known and is

reasonably accurate, 'This cost matrix can be updated periodically by



the astreraut cor ground command in the fight of cJevelopments during a
mission.

(2) A reascnably accurate estimate of the gronahility distribution
over the states of nature (process)., This data results from K3 or other
data taken or provious missions, in simulation runs, on other personnel
etc, Ib is reascnabie to ascame that sufficient data will be availahle
to basz a probacilistic estimate of the state of nature.

Two peneral methods of pattern recognition are possible, parametric
and non-paramstric techniques. The considerations above apply in eeneral
to parametric patiersn classification techniques where the states of nature
(pathological and rormal conditions of the heart etc.) can be adeouately
described as pomulation classes, each class represented by a mean vector
and covariance matrix. An input can be classified on tiie hasis of a set
of probapilities as to which class it helcngs.

Gruar data (suzh as life support parameters) representing scalar
variables would be described by the mean and variance or other parametric
information,

In the system block diagram figure 3.£ , the control functions may
consist of othar actions besides those listed abnve such as: ohbtain more
information on the process (man or machine) by further measurement. Such
an action may be the performance of a blood pressure test,

Feedback f{rom grourd control taking the form of the phvsicians
conclusions drawn from telemetered data could form an adaptive loop for
updating the distribution utilized as inputs to the Bayes decision device.

In the 1life support system the decision space can be thought of in

several ways, one being ditferent degrees of controcl of the environment
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(sach ~.

TROALLIND o8 OXron TLot rage control).

3.3 rngery o a Javes Jecision Againrt a tricri data

The Bzyes decision (stratery) consists of the anpplication of a

-
stratesy vectcr a which produces:

. m
. - - T z n
e e * Ma ei =] 5': a, =1, a, A0
T;— ? i::l d ;=1 1 2
Where M is an n by m
"9. ’ N N s N N . . .
cost matrix wnd e i: an as:ured (a nriori) distribution vector sienifvine

the state of rnators: <tiie value of the Tiliaear form shown ahove fer a

T T ) . . .
particular e, a an? M is tne expected pavoff of tne decision.

Migs M. eee M [ a |
12 in 1
- m?l, e 00800 000 a2
e e ee € . = P
1, 2’ *e mJ . . . . . .
m OO.U.OQQOm
ml mn %
- - L i

- ->
Thus we want to select a pure strate~v a (a vector with all elements

zero except for one element ecual to unity) which will minimize the ahove

. R . e . .
expreesion given "& priori® know.edge ni e.

We can illustrate the concept uest b considerine the following

example:

since

N
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‘—2*;-.,

o -

2 1 3 1

e, l-e -),-bT

1 3 1 32 =gl a =3
a
3
- ]

- ‘ - AN > .
wvhere a 13 the rick ana whore 2 is the vector transpose of a from matrix

N . 2 .. 1 v
alpenra & ¥ = (B A7),

Thas

+3

- -
[6, A"&'J [al_ 32 8,3} F? L

1 3 =

31

o

-1 T
s [CREOREN I FEAS
The linea: combination of vectors (columns of M) showm above in
parenthesis is commonly referred to in decision theory as a convex hull,
‘s =
we desagnate this vector S,
-
Thus we wish to minimize the dot product e ,'3 through the selection
. ->
of the bsst a,

Thas for an assumed e =[%, %]we have

3 - (1[ 2, 1] +0 [1, 3] + 0 [3, 1] ) or

2 =l . : L
a =[1, C, O] for the Bayes decision which yields min e . S.
—y
The optirmum a was determined by constructing the perpendicular to
T and sliding it until it intersected the first vertex of the area?g,(Fig 3-7).

> -
The equation of the perpendicular is e , s = C, C is constant, thus the
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where G are costs which ranee over CLC, | £1 (normalized to 1).
ij—

Lo

We have di as vhe probability of a4 system being in the i state of

nature thus d. +d_+ + « + +d + ¢ ¢ « 4+
Lo i .

m

The Vi then represent the Bayes risk function where V. is the dot
i

-> -3
product of d and C. = [c_ R
Pt e mi]

. - -
\[. = C . d
1 1

and the Bayes decisiorn is simply the minimum (over i columns) of V,,

i

The implementation of this process using Mente Carlo and statistical

switches can be realized by the scheme shown in figure 3-8 which presents

a simplified case of L states of nature with a-sociated probabhilities

dl’ d2, d3, dh and three possible actions (decisions) with associated

risks V. , V2, V.. The operation consists of a matrix-vector multiplication

3

by linear combination of rows:

(178, 275, w/e, /8]

[T Ty )

e

(1/8 0©
/8 6/8
3/8 3/8
1 3/8

1/8 |

1/8
3/8
L/8

=1/8 [1/8, 0, 1/8]
+2/8 3/8,6/8,1/8 + ...

The cost entries are represented by probabilities placed on the K

level statistical switches in front of the OR gates (figure 3-8 ) where the

bias is cuvantized to 1 of K levels.,

The probability distribution vector

'Eéis represented by an extra set of statistical switches placed on the

output of the minterm generator.

Each minterm is activated sequentially
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69



by an artifically generated environment (shift register with a single
bit recvcled) where one minterm is activated a number of times commen-

surate with the error variance desired on the output of each OR gate,

The final contents of each counter (V ) then will be the sum ot

— = J

all products in the dot product 0 . C where C = [C .3 C . ===2C
137 2] mj

the counter containing the smallest number yielding the minimum Bayes

risk.
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hi 0 CONCIL STHlIS

li.1 Theoretical Studies

The theoretical studies have included the defining of a performance
control monitoring system, development of some necessary mathematics for
such systems, and the aprlication of statistical switch techniques to
performing Monte Carlo type computations.

.2 Application Preblems

Three problems have bteen presented, each emphasizing slightly differ-
ent aspects of performance contrel systems., The next phase of this pro-
gram will be the programming of cne of the problems for simulation on a

digital computer.

71



APPENDIX A

1EAST SQUARES PRFDICTICN



LEAST SyUanEs PRuDICTICN
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properties, ~1a swme cemputing algordthm for ius updeting with time,
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&
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Lo B ittt . NG s

. i . v .t R . —
Nith gj(x ) veing indapendent funceticns of the measulemert vector x =v

3

-~

timseindex 1, ard wncre tos pavumeter vector iz of the Lom

e = \el, 6‘2, seny er)o

- gl(xl}el + gg(xl)ez + 00 *+ gn(x;)er

fer a1 = 1y 2y eealle

(1 » Y o + 1 5 A . .
Select the "hesi™ gotimals o this psrameterds, 8, as that which minimizes
the sum of vne sguares of the deviation of E(q, from ths actual
measuremenis Ja

That is, let

. - -Nr -~ - T
R" = [q - 2g) q - E(q))
J {

To minimize R s 135 the rauk of A be r, whereby it can be shown in a
straight-forwairc manner (setting its derivative with respect to q equal

to the wector 5\ that one must selact



P

9 = gh &Al A).'l

(Note thet matrix A is not a sguare matrix, and that ATA is & none

singular symmetric r x r matrix).

Ir this case, one obtains

~ '_ A o — Fa) m T
R~ = Lq-eA*] (q-@A"]
= 3 [I-AUTMdAﬂ$

A theorem by Markov states that if we take the components of q as
norma’ly distrituted with common variance @ 2 (a2 restriction that's
convenient rather than necessary,

then

-

w enwloe, z(ﬂmﬂ

-

A ~2
!n\ &zn’XZ
¢

=Y
A

(3 9 and %_.22 are indeperdert,

”

where M is ased to dencwve "distrivuted as® ari N la ’ B] used to denote
"normsl with mean u and variance-covariance R*, This result is of interest
to us here in that one obtains the distributional properties of the
prediction, required for decision theoretic considerstions.

As an illusiration let f(i,a) be suame arbitrsry function of, say,

three variables, Let these be the three measurements; x;, X,, and X3e

The best second-order fit of E(qj) is of the form

A=l



RN R B e

(1) (1)

(1) 2
97 * s00000 * x X3 023

E(qi) = l el+ x(i)

”~ A A
wvheré e = (elg 6’2, os0y 623)

16 evaluated as above using the matrix A given by

P

{ i % &R
xkl) 7;(\'"’ x‘;l) . :{(1/ 2
1 y < y - 3 1 ’

N
12 (i) ¢ (1) [(2),(1) (l)xgl)

/
o\ 3
1[2 , XB , 1 x2 ’)sl x3 ’xz

NOECND

3,0C...............0..‘....%’-

The previocuely describsed procediare now yields the leest squares fit of
the specitied fomm.

With n » r coilactions of data (consisting of the n rows of the
matrix A) une can readily establish ®. If the distribution of g is known,
one can alsc establish the distribution uf-g; For the time being, however,
we'll consider ;aa noxmally distributeds Conregquently, as n gets larger

the elements of the varisnce~covariance matrix associated with © decreases

+

approximately as ~e Wnereas this propexrty is desired when the process
considered is sta;.ionary, it may not be desired in the adaptive prediction
techniques considered here.

Consider first the case where N sets of data are c¢o be considered in
conjunction with weighting factors which depend only on their age. Tre

solution is obtainecd by using a modified Rz, Q2, given by




i w0 O e o o
Ol Wz 0O e oo
- ~‘ . Y . - T
F = [q-GAT] « o [q-eAT]
[ ] [ ] [ *
L] [ ] wn

wnere Ll 236G ol e weigniang factors. By oenoting the weighting

s
Y]

matiix S, w€e cuLsn

# = quql -quae’ -erwq +eaTwae!
wherein
Jg2 = -2qua + 208Twa = 0
36 A
8=9
Hence, J

-~ - -
B =g (wa) (aTwa)~t

where (ATW A)'l exists whenever (AT A)"l exists, (ie.es, whenever A is of
rank T, and O = 61, srea, el.). One can again obtain the distribution in
g ty knowing the diswvrioution of E'.
We shall now consider the computational aspects of the above. Designate

the perfonnance messurements by the vector

qO = (ql, q2,...,qn)- ///
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The total cystem - memory required for this updating process resides in
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the (1 x r) vector [qunJ
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This implies that the weight wj is given to the square of the jﬁ?_ deviation,
relative to the minimization procedure., It is simplest to assume that the
relative importance of one sample to another sample remains fixed once it
is estsblisheds That is, cnce the weight wy is established, the ratio
wj/wk for all k < j remains fixed (independent of assignments of weights

wy fori > 3)e Under this assumption, we see that for time index n+l we
can write

3 -1

¥ 0 |[An Wp O An

T T
(8, Bps1)

On+l = (qo, Qn+1)
O wn+l | | Bael O Vns1| | Bpaa

wherein our weighted updating procedure would compute

N

T T -1
en-hl [qownAn * ¥ ha Bn+l] [ An W'nAn M Bn+1 Bn+]:l
Noting that the up-dated parameters are represented as

El-o = (ao,, Qn-c-l)

An-!»l = An

Wn+) =|Wp O

L 0 wn,’.l

we see that  qWo A . = Qo¥phn + Wnug Gn41 Biad

and

T T T
An«l-l‘ﬂlnﬂAru-l - An wnAn ¥ wn-t-l Bn-l-l Bn+1

A-8



These parameters are then used in the succeeding cycles of computations,
yielding Qn+m’ for all m.

The above schcme can be readily modified in order to perform the
computation uf predicted performance on the basis of previous data without
updating. This would be useful for establishing control modifications of

the man-machine process.



APPENDIX B
THEORY OF ORGANIZING
TRAINABLE LOGICAL NETWORKS



MATHEMATICAL REPRESENTATION OF A TRAINABLE LOGICAL NETWORK
Consider a binary logical network with n-inputgvariablu and n-output |
variables. ,
Let: V) Vo V3 e ¥ be input variables
W) Wy Wy eee W, be output varisbles
X3 X, x3 ses X0 be combinations of input variables
Yy ¥p I3 eee Y0 be cambinations of output variables

If we associate with each of the input combinations a unit m-tuple (where
n = 2%), then any subset of the entire set of input combinations can be rep-
" resented by an- m-tuple which is a i:l.nea.r combination of the unit 'm-wploo.
That is, if the unit m-tuples are - |

e, = 1000, 0

e = 0100...0
°3

20010 .,.60

ean = 0000 see 1
then any class of input cambinations can be represented by an m-tuple,

zn ]
Xe I xe
jel 14

" where x;. = 1 if the combination x; is in the desired :I.nptit set, Otherwise

xi'OQ
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Similarly with the outputs

i=l
vhere y; =1 if ¥y is to be specified in the output set. Otherwise, y; = 0,

Now let switches be labeled Si 3 80 that Sj.‘1 is the comnection from input

combination X, to output variable w 3¢ For an n-input, n-output network

there will be, in general, n2" switches (£ =1,2, o ¢ oy 2" and §=1,

2, es.y n)e If to each of the switches is associated a value %4 such that
aiJ = 1 when switchesySiJ are closed and ai;l = 0 when S:'_.1 is open, then
input combination x, appears at the output as y = e, A where e, is the m-tuple

corresponding to input combination x, and A = (aid)'
The admissible set of outputs for a given input set X will be
Yx - di
where X 4 is the m~tuple X written in diagonal form,

The admissible set of outputs for all possible inputs will be

- ™ “
Ql.‘ 10000000
yo- 02 A= |0100.,.,.0 A= JA= A
o .
n
o 0000, .1

where the row J of A is.the output corresponding to input xd. The output
get is again representable as a vector '
on
! ) ]
Y = Z Ty y " 1y1u
i=] '
iy 0 * 0 71#

B=)



., Examples
transform: x to Y

010 = 101
101 - 001
110 - 010
all others - 000

let x; = vy v, vy for all possible values of the input varisbles

ie0, X, =000 and e, = 10000000
( x,=001 ‘ e, =01000000
xy=010 e;=00100000
xg=111 eg=00000001

The transformation matrix can be written down immediately. Each output
combination must appear as at least one row of a:l.J' Specifically, row i is
the output associated with input x,, so

A= (‘id) -

COO00O+HOO
OHOOOO0OO0O
OHOHHOKHFHOO

PR indicates that ewitch 8, is closed,
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If, instead of associating values a = (0, 1) with switches, we associate
a range of values 0 < aid <1, then a;_J becames the probability of the switch
being closed; i.e.,

iy = Prob (a4 = 1)

and the n-tuple
. n

L]
a = ¥ a,, e
i j 1) 7J

defines the statistical states with respect to input; combination X, The
statistical state of the total system is representable by the matrix A'.

AV = (aij)
A change in the statistical state of the system "1 A2 can be effected by
changing values of ‘ij If values are changed on successive inputs, thon
the transformation

ALk s Aeba
will involve at mcst only some a;‘ 3 1e04y

Ok (e g g )

where 9 and q, are values of a:(, and

P = Prob (Aa;tu qk-oqr)
where Pkr is the probability of transition from statistical state q to
q.. If the same rule is used for determining n;‘ on successive trials,
then the transition probabilities are functions of the states and the rule
only; i.e.,

= £(q q)

The probabintiaa of P then define a Markov process, since they are mncﬁonl
of the states and are independent of how the systems arrived at state Qe

B-5
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MATHEMATICAL INTERPRETATION OF THE GOAL FUNCTION

Previously, when the transition probabilities for the statistical

states of the machine were being developed, it was assumed that a rule for
dotermining new statistical states could be found. The new statistical
state was determined to be the old statistical state plus some incremental
change and the probability of that change occurring was the transition
probabili ty.

Recall that if the present statistical state is

8 (1) =g
and a (t41) = q
then & (t+1) = a,(t) +4 a,(t)
or ta; (t) = a, (t41) - a (t)
80 that Prob 8a, (t) = Prob (g = q_)
In somewhat greater detail

Aa;_ - [ail('ovl) + aiz(tﬂ) ...] - [all(t) + ai’z(t) ..J

- [agy(e) = apy0)]  [afy(me2) - agy(e) v
= 8 a,(t) Ba,(t) ooud ay (V)

There is no reason for us to expect that the increments comprising a;
need all be equal, In fact, by making the increments equal, we camnot get
to a majority of the statistical states. However, in the absence of very
specific information about the desired statistical state, it is difficult



t0 see why any one component of Aa; should receive greater changes than
another. Intuitively, changes A ai depend upon some measure of the machine's
outputs. The measure m(y), in the simpleat case, is m(y) = 1 if the machine
gives the deasired output and m(y) = O for an undesired output,

Clearly, a range O < m(y) < 1 is possible which oould be a measure on
the probability that y(t) is a desired output, Further, the measure need
not be on a single output combination. One might possibly use a measure
m(y!) over an output sequence. However, most of our work to date has used
the following simple goal function for determining da,.

Let Rc be a class of desired outputs. Then Aai hss been the following
function F(m(y)), a(t) of the machines outputs and logical states. .

ba =F [n(y), a(t)
= C [Zm(y) - l] [ai(t) - a(t)]

where ¢ < 1. Thus, all components Aai;l of Aai are of equal magnitude (c}

but may vary in sign. A single component of Aai is Justs B
Aa=¢C [Zm(y) - 1] [‘ij - ‘i.‘)]

where: n(y) = 1 y(t)cRo
n(y) = 0 y(t)fR,
c<1l

To find the new statistical state we observe:

Ar(t+l) = a'(L) + A a'(t) .
The question naturally arises as to what happens when a component of l; is
equal to 1 and A a (t) is not 0. It may be recalled that, in derivation
of statistical states, '13 was the probability of closure of switoh 8“.
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The problem is only momentarily embarrassing and can be surmounted either by
redefining the statistical states so that their components no longer repre-
sent probabilities or by allowing 4 a; J(t) only to take on values such that
0< 2 (t+1) < 1. The latter is chosen to preserve the statisiical state
conocept,

In order that there be no loss of information, the goal function

remembers the total Z“i'.j(t) and adds increments A";J to ai only when

0< 2 L a;_:)(t) < 1. The initial statistical state may be defined as

— -7;3
a0 = dagy (0
d.

In practice, the memory and the statistics of the switch are usually
closely associated and the probabilily of switch closure iz given by:
4

a'(J) =0 J<r
a'(3) = &5 r<y<(N-r)
a'(j) =1 (N-r)<3
whire: No « N a'(0)
| r = goal function memory capacity

Cbe
[ ]

N+ L (2a) - 1) (a- B

=
[ ]

arbitrary number of switch levels plus associated memory



THE TRAINING PROCESS

State Representation

As was indicated earlier, the behavior of a machine at any time can be
characterized by its statistical states and goal function., To see this more
explicitly, let us examine the switches associated with a particular input

combination x,. The switch involved would be Si1 Si2 eee S; + The respec-

tive probability of closure on each switch would be a:l'.l aj'_z coe ain. This
combination of values is the statistical state with respect to the inp
combination X, Frequently, it will be referred to as the gtatistical . -ate,

It should be observed that a:{ is not a number but rather is a funct =

whose values define the statistical states.

t f 1 1
&i ail 3.12 veo a.in

]
If each a;; can take on r values then a;_ can take on (r)® values.

Trangition Probabilities

Letting a'(t) = qj be the value of ai' at trial t, then the transition

probability to some other state q, on the next trail becomes
! t
Py = Prob [8‘1 (t+1) = q l a;(t) = qj]

The transition probability p 3k is said to characterige a Markov process if,
for any statement g whose validity is determined by a’(tl) where t, S+t
the transition probability remains unchanged; i.e.,

Py = Prob [a'(t+i) = q | al(t) = q ng]
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This assures that the transition probability of going from state q._l to

state G is independent of the sequence of states leading to qd. The tran-
sition probability pjk tacitly assumes a£ (t) = qj. Without this assumption,
the transition probabilities will generally appear time-dependent., If with-
out the assumption a'(t) = 9y the transition probability p jk( t+l) is inde-
pendent of t, then the process is said to be statlionary and the states are
sometimes referred to as ergodic states,

Transition Matrix

Previously, we saw the development of transition probabilities pch from
a statistical state qj to a state Qe The total picture can sometimes be
more easily visualized by means of a matrix of transition probabilities.
P=(pyy)
In the matrix P, the kth element of row J is the probability of trans-

ferring from state q;j to state Q.

9 i P11 Pyo ¢ o o plnq
K-

.
o Pk Pyn
% | P *** Pm|
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The notation of the transition matrix is useful because it allows us to
calculate various parameters which describe the process and is helpful in
classifying various types of processes.

For example, to calculate the transfer probability from state qd the

state q as a function of the number of trials, we observe the following:

Let pgnlz) be the probability of finding the system in state = after m-trials

(1) . .
(1) Pk Piy First trial

A%

(2) pgi) = ?p Second trial

jr Prk

(3) p,(jﬁ) = 7 pj" (m'“Pﬂr In general for m-trials
I' R - dh

(L) By further indvction

(m) (n)

(min) |
Pir Prk

by
Jk r

In matrizx notation

N

m m=-l
= p =p P

= {Prob [a(m) = q a(o) = q‘,}

We see then that the powers of the original tranaition matrix can
give us the probability of being in new states after several trials.

The study of Markov processes is a rather broad subject and no attempt
will be made here to explore the subject except as it relates directly ?bo

the organization of a machine,

B=-11



Clagsification of Markov Chains

In classifying Markov chains, we visualize a process which moves from
state to state. Classes of chaiﬁs are obtained by zquivalences derived by
restrictions imposed upon the movement from state to state.

Consider the situation where there exiasts two smets of states such that,
with the first set, the process can move to the second set but, once in the
second set, the process can no longer get back to the first set of states.
States belonging to the first set of states are called transient states.
States belonging to the second set of states form an absorbing chain., If an
absorbing chain consists of one state, then it is referred to as an absorbing
state, An absorbing state then is immediately recognizable in a transition
matrix, since it will have transition probabilities of 0 to all states except
itself; i.e.,

Pyg = O S

pijnl i=]
The behavior of a Markov process can, to a large degree, be characteriged by
the type of sets which make up the chains. Chains which have no transient
can be broken down into two types. They are regular and cyclic chains, In
regular chains the transition matrix will have no O entries for sufficiently
high powers. The process can be in any state after a large number of tran-

sitions. In cyclic chains there will always be some O entries in all powers

of the transition matrix., The process is predictable to subsets of the
chain and will move in a more orderly fashion from state to state, eventually

returning to its starting state.
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In chains with transient sets, we observe that it is implieit that such
chains also contain absorbing sets. The number of distinct absorbing sets
and their size serves to classify the process in this case. Thus, a chain
with transient sets may contain cyeclic, regular, or unit absorbing sets.

Occasionally, it is convenient to classify states within chains into
two broad classes., These are transient states and nontransient states
(ergodiz).

We will examine more closely the behavior of processes as they move
through the chains, First, we will consider chains with transient sets and
show that the process inevitably must leave the transient set. Second, we
will consider a chain with no transient sets and determine a time-invariant
probability distribution of states.

The Behavior of a Process in Chains

Intuitively, it is quite clear that, if a process moving through a
chain can leave a particular set of states but cannot enter into the set
once it has left, eventually the process will not be found in the tramnsient
sets To see this analytically, we recall that the probability of finding

the process in state q, m-trials after starting in state qd is:

(m) z m-1

r p:]r rk

It is just the probability of transferring to state q, in mel trials
and then to q on the next trial sumed over all possible Qe

Letting 9y be the starting state in a transient set (T) and q, be any
other state in (T), we see that

(m)
1}é,' J’]: <1l
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since 1t is possible to leave the sets It follows ﬁnediately that,

Lim z Pgrﬁ)‘m

meo
In matrix form
pm -0asm=~o
The mean number of trails for which the process rem;‘l.na in th_c tran-
sient sev is all Qe in T, given that the starting point in state q‘1 is
® (m)
M=z (1) (Tpy )
m=0 k

and the mean time in any particular state q is

My £ (1) (pY)

m=0
since each transition contributes one trial. The matrix which gives the

mean time remaining in the transient set starting fram any transient state
becomes

M=y pm
mn=0

This quantity is somewhat easier to compute in an alternate form
M= (I-P)*t
where P is the transition matrix for the transient states. To see that

these forms are equivalent, observe

(I-P)(IT+P+P° ... FP) w T~ ,
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m+l
For m = », we hava shuwn p - 0 thus,

(I”VP}(\I*'P{PQQQQPHI)'I
(I-P) (3 ) et

m=¢

Since this matrix product is nonsingular, we may write

; e (1 - Pt
m=o0

If a chain has no transient sets, then it is possible for the process
to get to any state of the chain. The fraction of time that the process
spends in each state will then form a probability density function that the
process will be found in a given state. Previously, we have shown that, if
it is possible for a system to leave a state, eventually it will, To observe
the behavior of such a system, we assume tha®t the time average state con-
figuration of one system is eyual to the instantaneous ensemble average of
many similar systems.

Looking at an ensemble of systems, we see that, il there exists an
initial distribution F(qj) of systems in each state F = 11'2 oo fJ oo fm
where f 3 is the fraction of systems in state qﬂ’ such that the distribution
is time-invariant, then the process is stationary. For the fraction of
systems in each state to remain constant, the number of systems leaving a
giren state must be equal to the number of systems entering that state.

The fraction of systems leaving state q‘_l tia simply the product of the
fraction of systems in that state with the transition probabilities to all

other states. Thus;
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Fraction leaving qj - f.:l pal + ’3 py‘, T fd me

"3 TP
" :3

Since

| Y Pgg =1
k
and
ﬁactim ent'ering qj = 1 pu + fJ pz’j LYY +.fm pni
-y 1 Pyy
i
So = L fipy

i

in matrix form for all states
F=FP
talkkdng transposes of both sides

#T o T T

(FF-I)F =0
which is a homogeneous set of equations in F(F = £, t2 coo rm) and has a
solution only if the determinant of the coefficients vanishes; 1.0,

ERTIE

e cmr g e e
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This eriterion establishes a necessary condition o> the distribution P to
remain time-invariant. Clearly, when the solutions to thm homogeneous set
of equations has f:) # 0 for all j, there are no ’tranaient . ~te; snd, when

fd = 0 for at least some j, there axists at least one transient set.
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APPENDIX C
TRUNCATED SEQUENTIAL DECISIONS
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Bayes Truncated Sequential Decision Solution

Let the loss function associated with one of a finite set of possible
states of nature,wé.ﬂ., and one of a finite set of possible actions,
a € A, be denoted L (a,w). If one selects that action which minimizes
the e:yected loss after k - experiments have been performed, then this

8
expected loss can be shown( ) to be given by

U -kz_ C [_L ]
K o 1(x1’“””i) + 1:22 Ekl (a,w)

where C-_,L is the cost of the 15‘h experiment which yielded measureme.it xi.

(If A is not finite, one simply replaces "minimum" with "infimum" over A.)
In this expression, 3 () is the distribution over the states of nature

and

Fz(;)gﬂ L(a,wW) p (x| X1s Xy ...,xk:;,))%(u))

Beg (Mem)] : S S PR, o A,w) )
FR) wen

where F(x) is the set of all x whose first k-coordinates are Xp eeey X
F) [ ]

To establish whether to continue experimenting or to make a decision
after a given experiment, one compares the expected loss associated‘\;with
each of these possibilities. The lesser of these two expected losses (after
k-experiments have been performed) is given byock. After the complete set
of N-experiments hLave been run, the minimum loss would be

N

MN ] UN = %1 Ci(xl’ x2’ ey xi)

+ )aﬁ‘:: EN%[L(a,w)]

C-2



Tence, af'tev v errerinents it would be

(

‘J l
O< il =~ "malder oi tle
[N aed 1"‘ Ib .
o u«.l:} [O( _l

Continuiny in this way, one obtains ifhe complete seil ol rmipiinun risks at

each stage of ewperimeontation to be

X C
Ly = Smaller iUN'l’ EN_l’% EO(N]

O(J = Smaller {UJ, Eja)[o(yl]

[

.

of = smaller {uo, Bg [ot?)}

where Uo is the expected loss sssociated with making a decision without
experimentation, given by
U, - min Z L(a,w) % (W)
aéA wsfL
The Bayes optimal procedure requires compuiation of OlN, Xy 1 eeer Ko

in this order. At each stage of experimentation, say j, one makes a decision
C=3



=

if

Otherwise, one continues with experiment j + 1. This is represented

schematically by the tree-structure shown below in figure C-1,
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Truncated Sequential Decisions with Determination of the Order of Experimentation

Because notation becomes cumbersome, the procedure is described for
the case of three experiments €15 €5 3. Generalization to N-experiments
follows directly, a5 does a rigorous proof. The description given below,
howover, makes {or ¢reater clarity.

Basicaily, the rrocess is like that described previcusly. The loss
matrix will be given by ((L(a,u)) )). Let the states of nature, () € L
and the sel of possible actions, a € A, be finite, Let the set of observa-
tions resulting from the experiments be denoted by the vector X = (%15 %5, x3),
where coordinate X, corresponds to experiment e;. The minimum expected loss

(12)

without experimentation is then given by
U,=Min E [L(a,UO)J
T "9
6

where 3 (L) 15 the a priori distribution over the states of nature and

ey [ aw] - Eﬂua,w)g (w)

After experiment e, has been performed, yielding the result xi = xz, the
minimum expected loss associated with making a decision is given by

U; = min R [L(a,w)] + C,(x9%)

i a€A ;i iV

where Cy (xg) is the cost of performing experiment ey and having the results

be x; = xz, and where z Z
L(a,W)p(Xl%; = x§,w) 3 (W)

" F(XI%3) éfi(x'xi " W) 3(“”




. . Rl DY) . L. . ,
with the scl b (x'xi) uoed Lo indicate sunmation is towen over Lhe set
of all posuibls X vhose :ly—1 coordinate is x; = x?, (The symbol p is used
14 POSLLOLY X wNose inate Xl 1 sym P 1S
generically to represent "probability".,) In a like manner, the minimum

expected loss associated wilh making a decision after performing experi-

ment ey and then performing eJ, oktaining results x; and x4, is given by

J

o e 1 0 o 0
I E?ij [L(a"‘o)] v C0xg) o+ Cyy (xg %y

0o o, . .
where Cij (xi,x-} is the cost of experiment e

i after ey has been per-

formed and where

Z Z L(a,w)p(':?lxz,xg,w)é(w)

*31) [L(a’“’)] me ) o

For the genersl case considered here, one should note that
- 0 0 - 0 o)
PG [, x5, W) 4 p X, x,w)

That is, the order in which cxperiments are performed can be expected to
be different if, for example, the experiments alter the state of the system
considered. However, this procedure is actually required (in general)
whenever these probabilities are not independent.

The procedure at each stage in experimentation is to compare the
expected loss associated with stopping experimentation and the expected
logs for the various continuations, As before, the various expected

losses are established by first computing



Sy = Uiy Oy, = Ugpp
%13 ° Yoy o1 = U

o< . = smaller

{ E; 12 [0, 3]}
o3 = smaller %UB, %]_3 [01132]

{vn

{

olp; =  smaller 1, E§21 @(2133

E3e3 [0(231]

1, 33 @(312]]
U, E33 (o322 }
Then one computes

(. = smaller {Ul, 31 E( 9] E 31 E(B] }

O<2 =  smaller {Ug, E§2 EDCZI_] 32 BB] }
°<3 = smaller iUB’ 33 [0(31] 93 [O<32.] }

Finally, one establishes
0<¢ =  smaller {Uﬁ, E3 [0(1] ’ E% [?(2}, E3 [o< 3] }

One can note that o 13k is the expected loss associated with performe

o, = smaller
<
°<31 = smaller

0(32 = smaller

ing experiments i, j, ¥ -~ in that order. The expression xij is the -
smaller of the expected losses associated with stopping or with contiming.
Hence, it is the minimum expected loss (corresponding to the minimum

expected loss procedure}, This argument is repeated for o¢ i and for °<'¢°
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By this argument, one sees that CK.¢ is the minimum exrected risk prior
to experimenting.
To utilize this procedure, one should decide without experimentation

if

Ay = Uy

If this is not se¢, and

oLy = Ea\[di}’

then one should perform experiment e

0

Having done this, one obtains the result X3 % Xy and inquires if
.0 o 10
“l\x‘._) = Ji(xi)

wherein one should decide without further experimentation. If this is

not so, and

“i(xg) = E%i [o(lj] ’
then the procedure calls for continuation by performing ey and etc.
This is illustrated by the tree shown in figure C-2,

A much more formal proof can be argued on the basis of showing that
the expected loss for any other partitioning of the outcome space into
actions or experiments will be higher than that described above. This has
been accomplished, but owing to its lack of heuristic appeal 4s not in-
cluded in this report.
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